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Abstract

Lipopolysaccharide (LPS) activates polyclonal B cells and antibody production independent of T cells.
Treatment of murine B cells with LPS caused immediate phosphorylation of INK1 and JNK2, which was further
enhanced by the addition of interleukin-4 (IL-4). Whether LPS-induced JNK phosphorylation is involved in
polyclonal antibody production by B cells was examined using B cells from JNK1-deficient (JNK17) and JNK2
mice. B cell development in both JNK1"and JNK2 ' mice was comparable to that of wild-type (WT) mice.

" B cells, as assessed by *H-thymidine incorporation, were

The LPS-induced proliferative responses of JINK1
higher than those of WT B cells over the range of doses tested, suggesting that JNK1 negatively regulates B cell
proliferative responses following stimulation with LPS. In contrast, INK2’ B cell proliferative responses were
slightly increased in a narrow range of doses (around 5 pug/ml), while they were slightly decreased at low and high
concentrations of LPS (0.15 and 50 pg/ml). Production of IgG1 and IgG2a polyclonal antibodies in responses to
LPS plus IL-4 was increased in both INK1” and INK2" B cells relative to WT B cells, whereas IgM production
was substantially decreased. LPS-induced IgG2b production was substantially enhanced in JINK2" B cells, but
unaltered in INK17 B cells relative to WT B cells.

late B cell isotype switching, but positively affect B cell proliferative responses following stimulation with LPS

These results suggest that INK1 and JNK2 negatively regu-

and/or IL-4. Because LPS is a component of gram-negative bacteria, these results have implications for under-
standing B cell behaviour after bacterial invasion as well as the molecular mechanisms underlying LPS-induced

polyclonal B cell activation.

Introduction

Lipopolysaccharide (LPS), a major cell wall compo-
nent of Gram-negative bacterial organisms, potently acti-
vates polyclonal B cells to proliferate and differentiate
into antibody-forming cells"”. LPS-activated B cells
undergo isotype switching under the influence of T cells
or their derived cytokines and co-stimulators. LPS in
combination with IL-4 and IFN-y induces isotype
switching to IgG1 and I1gG2a*?, respectively, suggesting

that isotype switching depends on the cytokine milieu.
LPS binds to the complex formed by Toll-like receptor4
(TLR4) with MD-2 and CD14, activating a signal trans-
duction cascade that includes nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-xB) and mito-
gen-activated protein kinases (MAPKs)®”. The
MAPKs comprise extracellular-signal-regulated kinases
(ERKSs), p38MAPKSs, and c-Jun NH,-terminal kinases
(JNKs)¥.  The JNKs include JNK1 and JNK2, which
are expressed ubiquitously, and JNK3, which is present
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mainly in brain and testis'"'".

Recent analyses using
mice deficient in JNK genes have demonstrated that dif-
ferential expression of JNKs may play a crucial role in
multiple tissues, including T cells'”. CD4-positive
(CD4") T cells from INK1-deficient (JNK1”) mice dis-
play increased production of 1L-4 and IL-10"", resem-
bling a T-cell helper 2 (Th2) phenotype. Production of
[FN-y, a hallmark of the Thl phenotype, is severely im-
paired in JNK2" CD4" T cells'®, suggesting that JNK1
and JNK2 play non-redundant roles in T cell immune re-
sponses.

To assess the role of JNKI and JNK2 in B cells, we
employed the T cell-independent B cell activator LPS
and examined whether LPS-induced B cell proliferation
and differentiation are affected in JNK17 and INK2" B
cells. The proliferative responses of B cells to LPS
were moderately increased in JINK1" B cells, with a mi-
nor change in JINK2” B cells. In addition, production
of IgG1 and IgG2a in response to LPS plus IL-4 was
somewhat enhanced in both INK17 and JNK2" B cells,
with concomitant reduction of IgM generation. The
present findings suggest that INK1 and JNK2 function as
modulators of immune responses in B cells as well as T
cells.

Materials and methods

Mice

JNKI1", INK2", and WT mice were obtained from
Jackson Laboratory (Bar Harbor, ME, USA). The mice
were backcrossed to C57 BL/6J for 6 generations.
Breeding and maintenance were carried out under specif-
ic pathogen-free conditions at Tokyo Medical University
and followed the guidelines of the Ethical Committee of
Animal Experiments of Tokyo Medical University.

Isolation and culture of B cells

For isolation of B lymphocytes, single-cell suspen-
sions prepared from spleen were treated with ACK solu-
tion (0.83% NH4CI, 9 vol : 0.17% Tris-HCI buffer, 1
vol) to remove red cells and then isolated by negative se-
lection using a B cell isolation kit (Military Biotech, Ber-
gisch Gladbach, Germany). Briefly, the red cell-deplet-
ed spleen cells were incubated with biotin-conjugated
anti-CD43, anti-CD4, and anti-Ter-119, followed by in-
cubation with magnetic microbeads conjugated with anti-
biotin. After washing, the labeled cells were isolated
using autoMACS Pro (Military Biotech). Purified B
cells (1x10%/well) were cultured in RPMI-1640 medium
containing 10% fetal bovine serum (FBS) and 2-mercap-
toethanol (2-ME) in the presence or absence of LPS
(Sigma, St. Louis, MO, USA) or LPS plus IL-4 (Peprot-
ech Inc., Rocky Hill, NJ, USA). In some experiments,
Baf-3 cells overexpressing MAPK kinases 7 (MKK7)-
JNKI or MKK7-JNK2" (Cao et al. unpublished obser-
vation) were used to confirm the specificity of the anti-
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bodies (Abs) used in this study.

Western blotting

Western blotting was performed as previously
described'?.  Briefly, samples (40 pg/lane) were sepa-
rated by SDS-PAGE, then transferred to polyvinylidene
difluoride membranes (Millipore, Billerica, MA, USA).
After washing, membranes were blotted with primary
Abs : anti-JNK 1, anti-JNK2 (Santa Cruz Inc., Santa
Cruz, CA, USA), anti-phospho-JNK (Cell Signaling
Tech. Inc., Danvers, MA, USA), and actin (Santa Cruz
Inc.). Bound primary Abs were then detected with
HRP-conjugated goat anti-rabbit IgG (Fc) (1 :2,000)
(ICN Pharmaceuticals Inc., Aurora, OH, USA). After
several washings, membrane-bound HRP-conjugated
Abs were visualized with ECL (GE Healthcare, Bucking-
hamshire, UK).

Flow cytometric analysis of surface markers

Flow cytometric analysis was done as previously
described'”.  Briefly, cells (1x10%sample) were stained
with anti-CD3-conjugated with fluorescein isothiocya-
nate (anti-CD3-FITC), anti-IgM-FITC, anti-CD21-PE,
anti-CD23-FITC, anti-CD45R (B220)-APC, or anti-
IgM-Percp-cy5.5 (BD Pharmingen, San Diego, CA,
USA) on ice for 30 min, followed by flow cytometry
(FACSCalibur, Nippon Becton Dickinson Company Ltd.,
Tokyo, Japan).

’H-thymidine uptake

Cells were cultured with or without various concentra-
tions of LPS for the indicated number of days and were
pulsed with 1 pCi (1 mCi=37 MBq) tritiated thymidine
(*H-TdR) for the final 6h. The cells were harvested and
counted by a liquid scintillation counter.

CFSE cell division analysis

B cells were labeled with 1 uM carboxy-fluorescein
diacetate succinimidyl ester (CFSE) (Invitrogen, Carls-
bad, CA, USA) in PBS with 0.1% FBS for 5 min at room
temperature. The labelling reaction was quenched by
addition of a 10-fold volume of PBS/0.1% FBS, and the
cells were washed twice with cold RPMI-1640 medium
to remove excess CFSE. FACS analysis enabled gating
on individual CFSE generation of B cells.

Quantitation of Ig by enzyme-linked immunosor-

bent assay

Enzyme-linked immunosorbent assay (ELISA) was
performed by a modified procedure as previously
described'.  Briefly, ELISA plates were coated with
2 pg/ml anti-mouse IgM, anti-mouse IgG1, anti-mouse
IgG2a, or anti-mouse IgG2b (Southern Biotech, Bir-
mingham, AL, USA) in a total volume of 50 ul. After
incubation at 4°C overnight, the supernatant was discard-
ed, followed by several washes with a buffer (0.05%
Tween 20 in PBS). The plates were pre-incubated with
a blocking buffer (0.25% bovine serum albumin (BSA)
(Sigma) and Tween 20 in PBS) at 37°C for 1h. After
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several washes, samples were added to the plates, fol-
lowed by overnight incubation at 4°C.  After several
washes, alkaline phosphatase-labeled goat IgG (Southern
Biotech) specific for mouse IgM, 1gG1, IgG2a, or IgG2b
was added and then incubated at 4°C overnight. Color
detection was done using p-nitrophenyl phosphate for 30
min. The concentrations of IgM, IgG1, IgG2a, and Ig-
G2b were determined on the basis of standard curves
from standard antibody preparations (Assay Designs,
Ann Arbor, MI, USA).

Statistical analysis

Data were expressed as the means+SD of several inde-
Statistical significance was deter-
a difference of p<0.05 was

pendent experiments.
mined by Student’s 7 test ;
considered to be significant.

Results

LPS induces phosphorylation of both JNK1 and

JNK2 in murine B cells

To assess whether LPS in combination with IL-4 in-
duces JNK activation in B cells, B cells were cultured
with 10 ug/ml LPS, 10 ng/ml IL-4, or 10 pg/ml LPS plus
10 ng/ml IL-4 for 30 min and assayed for JNK phos-
phorylation using Abs specific for phospho-JNK. Ad-
dition of LPS immediately resulted in substantial levels
of phosphorylation of the 54 kDa protein, with moderate
phosphorylation of the 46 kDa isoform (Fig. lA). Phos-
phorylation of both the 54 kDa and 46 kDa proteins was
higher after combined stimulation with LPS and IL-4
than after stimulation with either alone. Levels of JNKI1
and JNK2 were unaltered by stimulation with LPS and
IL-4. The specificity of the Abs used in this experiment
was confirmed using Baf-3 cells expressing MKK7-
JNK1 and MKK7-JNK2. The anti-JNK1 Abs detected
MKK7-JNKT1, but not MKK7-JNK2, which was specifi-
cally visualized with the anti-JNK2 Ab (Fig. 1B).
These results suggest that LPS induced phosphorylation
of both INK 1 and JNK2, and that it was further enhanced
by the addition of IL-4.

JNK protein expression in B cells from JNK1- and

JNK2-deficient mice

To analyze the role of JINKs in the antibody responses
in vivo, homozygous mutant mice were generated by in-
tercrossing heterozygotes, which were determined by
PCR using genomic DNA. The major JNK1 and JNK2
proteins found in spleen B cells from WT mice corre-
sponded to the 46 kDa and 54 kDa isoforms, respectively
(Fig. 2). The JNKI1-deficient B cells were confirmed to
be defective in JNKI1 protein expression, with JNK2 lev-
els comparable to those of WT B cells. Likewise, JNK2
protein was confirmed to be absent in the INK2 " B cells.
These results suggest that homozygous JNK17 and
JNK2" B cells were defective in JNKI and JNK2 pro-
tein expression, respectively.

Y. CAO, et al : JNK regulation of LPS-induced antibody responses

A. LPS h N + N *
(kDa) IL-4 -

50' T |||
3 e pho-JNK

s e 3
ol R ‘
50 -
— e JNKI1
40 - é—

50 O —— < [N [)

40—
50

w <~ Actin

30 min

40

Time 0

MKK7- MKK7-

(Da)  ector JNKI JNK2

140

100 '

50 Rz <~ MKK7-JNK1
60 g,

50 i

40 M. S e - < INKI

——

MKK7- MKK?7-
vector JNKI1 JNK2
-

= s

< MKK7-INK2

(kDa)
140 w—

* Non-specific bands

Fig. 1 JNKI and JNK2 are phosphorylated in response to LPS
and LPS plus IL-4. B cells were stimulated with or
without 10 pg/ml LPS or LPS in combination with 1L-4
(10 ng/ml) for 30 min, followed by assay for phosphoryla-
tion of JNKs using phospho-specific JNK Abs (A). Lev-
els of INK1 and JNK2 were also evaluated using anti-
IJNK1 and anti-JNK2 Abs (A), the specificity of which
was confirmed using Baf-3 cells expressing MKK7-JNK
and MKK7-JNK2, respectively (B).

Lymphocyte development is not impaired

To determine the roles of JNK1 and JNK2 in lympho-
cyte development, spleen cells were stained with anti-
CD3 and anti-IgM for identification of T cells and B
cells, respectively. No differences between the percent-
ages of CD3" T cells and IgM" B cells were observed in
JNK17", INK27, and WT spleen cells (Fig. 3A), as re-
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JNK2" B cells, respectively. B cells from JNK17,
JNK27, and control WT mice were assayed for JNK 1
and JNK2 expression by Western blotting. As a
control, the levels of actin were also evaluated by
Western blotting using anti-actin Abs.
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mice is unaltered. Spleen cells were stained with
anti-CD3-FITC and anti-IgM-FITC mAb (A), fol-
lowed by flow cytometric analysis. IgM" B cells
were also stained with anti-CD21 and anti-CD23 for
quantification of immature (CD21 CD23") and ma-
ture (CD21°CD23") B cells, respectively (B). Re-
sults are shown as means +SD from three indepen-
dent experiments.
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ported previously'”.  Analysis of differentiation markers

(B220, IgM, CD21, CD23) that characterize the matura-
tional stage of B cells'”?” did not reveal differences
among JNK™, JNK2", and WT mice (Fig. 3B). These
results suggest that lymphocyte development is not per-
turbed in JNK17" and JNK2" mice.

LPS-induced proliferative responses in JNK1- and

JNK2-deficient B cells

To assess the roles of INK isoforms in B cell prolifera-
tion, INK17, INK2", and WT B cells were cultured with
the indicated concentrations of LPS for three days.
LPS-induced B cell proliferative responses, as assessed
by *H-TdR incorporation (Fig. 4A) and CFSE labelling
(Fig. 4B), were considerably increased in JNK17" B cells
compared with controls. The enhanced LPS-induced
proliferative responses in JNK1 " B cells were not due to
alteration of the kinetics of the LPS-induced proliferative
responses (Cao et al., unpublished observation), suggest-
ing that JNK1 negatively regulates LPS-induced
proliferation. JNK2” B cells showed a somewhat dif-
ferent pattern of LPS-induced proliferation, with a slight-
ly decreased response at the lower and higher doses
(Fig. 4A). The proliferative responses of INK2" B cells
in response to 10 pg/ml LPS were comparable to those of
the control, as assessed by *H-TdR incorporation and
CSFE-labelling (Figs. 4A and 4B). In contrast, the
LPS-induced proliferation at 5 pg/ml was somewhat in-
creased in JNK27 B cells. Thus, INK1 and JNK2 dif-
ferentially regulate LPS-induced B cell proliferation.

LPS modulates antibody responses in JNKI1- and

JNK2-deficient B cells

To assess the role of JNKs in polyclonal antibody re-
sponses, JNK17, INK2™", and control B cells were cul-
tured with 10 pg/ml LPS in the presence or absence of
IL-4 for seven days, followed by assays for antibody
production by ELISA. LPS-induced 1gG1 generation
was slightly increased, and IgG1 generation was further
moderately augmented in both JNK17 and JNK2” B
cells by the addition of IL-4 (Fig.5). Interestingly,
LPS-induced enhancement of the IgG2b response, repre-
senting a Thl-like phenotype, was found in JNK2" B
cells (Fig. 5). Likewise, a moderate increase in 1gG2a
production in response to LPS plus IL-4 was detected in
JNK2" B cells, although it was not significant in INK 17~
B cells. Concomitant with the increased production of
IgG1 and/or 1gG2a/IgG2b in both INK1” and INK2” B
cells, LPS-induced IgM production was substantially de-
creased, suggesting that JINK1 and JNK2 regulate isotype
switching. These results suggest that JNK1 and JNK2
modulate the LPS-induced polyclonal antibody respons-
es to a marked extent.

Discussion

B cell proliferation and antibody generation in B cells
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Fig. 4 LPS-induced proliferation is enhanced in JNK1” B cells, whereas it depends on LPS dose in INK2” B cells. JNKI/,

JNK2 ", and control WT B cells were cultured with various concentrations of LPS for 3 d and pulsed with *H-TdR for final 6

h before harvesting (A).
Materials and Methods.
from controls.

are controlled by several factors including CD40L, cyto-
kines, and/or TLR signals®’*®. IL-4 directs IgG1 and
IgE antibody production®”, whereas IFN-y and/or 1L-27
favor IgG2a antibody isotype switching”*. In addi-
tion, CpG-ODN, a ligand for TLR9, stimulates B cells to
generate 1gG2a with concomitant inhibition of IgE syn-
thesis through the activation of transcription factor
T-bet**?®.  LPS stimulates 1gG2a/2b and I1gG3*” pro-
duction by B cells, and the addition of 1L-4 stimulates

The LPS-stimulated B cells were also evaluated by CFSE-labelling method (B), as described in
Results are shown as means+SD from three independent experiments.

*Significantly different

IgG1". In the present study, we examined whether INK
isoforms modulate B cell function after stimulation with
the polyclonal B cell activator LPS, a ligand for TLR4.
LPS-induced IgG2a production in the presence of
IL-4 was moderately enhanced in JNK2” B cells, com-
pared with that of the control (Fig. 5), although JNK2
regulates production of IFN-y, a hallmark of Thl cyto-
kine, in CD4" T cells'?, favoring 1gG2a production®?'.
These results suggest that JNK2 controls IgG2a produc-
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tion depending on cell lineages and/or cytokine milieu.
Moreover, LPS-induced IgG2b generation was enhanced
in INK2" B cells compared with those of JNK1 ' and
control B cells (Fig. 5). Concomitantly, [gM generation
was substantially inhibited in JNK2" B cells, suggesting
that JNK2 negatively regulates isotype switching to IgG
isoforms. Interestingly, JNK2 " mice also showed an
enhanced NP-specific [gG2a production after immuniza-
tion with T cell-independent antigen NP-Ficoll (Takada
et al. unpublished observation). Thus, it is possible that
INK2 regulates antibody responses in response to bacte-
ria and viral invasion through TLRs.

LPS-induced proliferation, as assayed by *H-TdR in-
corporation, was also moderately enhanced in INK1" B
cells relative to the control during the entire period tested
(Figures 4A and Cao and Takada et al. unpublished
observation). The number of cell divisions was moder-
ately increased in JNK17 but not INK2" B cells relative
to WT B cells after stimulation with 10 pg/ml LPS (Fig.
4B). Thus, it is reasonable to speculate that enhance-
ment of the LPS-induced proliferation of INK1” B cells
was due to increased cell division rather than cell
survival. In contrast, INK2” B cell proliferation in re-
sponse to LPS was moderately increased only at 5 pg/ml,
with minor decreases at lower and higher concentrations.
Further studies are required to understand the LPS dose-
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response of JNK2"" B cell proliferation in a physiological
setting. Together, INK1 and JNK2 differentially regu-
late LPS-induced B cell proliferative responses.

The molecular mechanisms underlying the increased
isotype switching in JNK1/INK2” B cells remain
unclear. CpG-ODN and IL-27/LPS induce 1gG2a pro-
duction through activation of transcription factor T-bet,
with a concomitant decline in IgG1 and IgE synthesis®™**.
However, both 1gG2a and IgG1 productions were aug-
mented in JNK1” and INK2" B cells after stimulation
with LPS plus IL-4, suggesting that T-bet alone does not
account for the enhancement of the LPS-induced anti-
body production. Because JNKI activation results in
activation of transcription factor AP-1'9%Y, determination
of how AP-1 modulates antibody formation in B cells is
of interest. Further studies are needed to resolve the
molecular mechanisms by which JNKs regulate isotype
switching as well as proliferation in B cells.

JNKs might contribute to the prevention of bacterial or
viral infection through production of antibodies as well
as pro-inflammatory cytokines**”.  Although bacterial
and viral invasion has to be blocked, an excessive re-
sponse that damages the host must be avoided. In the
present study, we clearly demonstrate that JNKs nega-
tively regulate antibody production in response to the
TLR4 agonist LPS, helping to prevent an excessive im-
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Fig.5 The production of IgG1 and [gG2a/IgG2b in response to LPS and/or IL-4 is enhanced, with concomitant decreases in LPS-in-

duced IgM production in both JNK1- and INK2" B cells.

The JNK17, JNK2", and control WT B cells were cultured with

IL-4, LPS, or LPS plus IL-4 for 7 d, and culture supernatants were assayed for production of IgM, IgG1, IgG2a, and IgG2b.

Results are shown as means = SD from three independent experiments.

*Significantly different from controls.
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mune response.

These observations are valuable for

understanding the mechanisms of polyclonal antibody re-
sponses, and also the defense mechanisms against micro-

bial invasion.
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