K+ 脱分極及び変動磁場照射による HeLa 細胞膜の構造変化

 河内
 堯¹⁾
 加藤治文¹⁾
 會沢勝夫²⁾

 池原敏孝³⁾

¹¹東京医科大学外科学第一講座 ²¹東京医科大学生理学第二講座 ³¹徳島大学医学部生理学第一講座

【要旨】 生理的条件下で HeLa 細胞表面の赤外スペクトルを観測した.標準塩溶液中で HeLa 細胞表面タン パク質のアミド I (=C=O) 吸収帯は β -構造成分を主体とするが K⁺ 脱分極状態では部分的に random-coil 構造を形成した.また,変動磁界をかけると random-coil 構造が出現した.同時に NH₃⁺(δ as)</sub>が増加すると COO⁻(st as) 吸収帯である 1600~1560 cm⁻¹ の吸光度は増加した.

アミド II (=N-H) のピークは K⁺ 脱分極状態で吸光度を増加させる.しかし,変動磁界がかかると完全に 縮小していた.これらの現象は処理後 2~5 分で完全に回復した.

脂肪酸エステルのピーク 1743 cm⁻¹ は K⁺ 脱分極状態で吸光度が増大し、同時にタンパク質の側鎖に依存 する 1770 cm⁻¹ にカルボン酸 COO⁻_(st sy) のピークを新たに形成していた. 変動磁界がかかると脂肪酸エステ ルのピーク 1743 cm⁻¹ は吸光度が減少し、1730 と 1757 cm⁻¹ に脂肪酸エステルの解離によるカルボン酸 COO⁻_(st as) のピークを新たに形成していた.

カルボン酸 $COO^-_{(st)}$ の増大に対応して K⁺ 脱分極状態でメチル基の $CH_{3(\delta sy)}$ ピーク及び $CH_{3(\delta as)}$ ピー クとも増大していた。変動磁界がかかると $CH_{3(\delta as)}$ 1458 cm⁻¹ でのピークは 1440 cm⁻¹ に移動し吸光度が 1/10 になり、 $CH_{3(\delta sy)}$ に帰属する 1394 cm⁻¹ のピークは 10 cm⁻¹ の低波数移動のみで吸光度には大きな変動 がなかった。

K⁺ 脱分極状態になっている細胞膜のタンパク質の構造は β-構造成分が主体であるが部分的に randomcoil 構造に変換しており,同時にアミド II 構造 N-H の分子振動の増大をもたらしている.また,タンパク質 の側鎖にあるカルボン酸 COO⁻(st) のピーク増大とメチル基の CH_{3 (δ sy)} 及び CH_{3 (δ as)} のピーク増大が K⁺ 脱分極形成に大きく関与している.

変動磁界がかかると膜のタンパク質に random-coil 構造の部分的出現や NH₃+_(ð as) のピークが増加し, COO-_(st as) のピーク増加とアミド II の縮退が起こる。しかし, リン脂質のコリンを構成しているメチル基と その結合側であるタンパク質側鎖のカルボン酸との解離が起こらないために脱分極に伴う機能の活性が阻害された。

はじめに

近年,核磁気共鳴による診断の進歩に伴って,磁気 に曝される機会が多くなっている。また,交通機関に もリニアモーターカーの導入が現実化してきた. この時点で変動磁界による生体への影響について 検討する事が大きな課題となってきた.

我々は細胞膜に存在する Na+-K+ ポンプや K+ チャ

2001年9月26日受付, 2002年1月21日受理

キーワード: HeLa 細胞, K⁺ 脱分極, 電磁場, 赤外分光, 分子振動 (別刷請求先:〒160-0023 東京都新宿区西新宿 6-7-1 東京医科大学外科学第一講座 河内 堯) ンネルは変動磁界により活性が阻害される事をすで に報告してきた¹⁾.この阻害は細胞膜表面に存在する タンパク質や脂肪の電荷分布状態や細胞内 Ca²⁺ 濃度 の増加抑制がその原因の一つと考えられている²³⁾.

本論文では脱分極状態や変動磁界をかけた状態で の細胞膜表面に存在するタンパク質や脂肪の分子振 動を観測し,その構造変化伴う活性状態の解析を行っ た.

材料と方法

細胞培養:実験にはヒト子宮頚癌由来の HeLaS3 細胞 (大日本製薬) を使用した。細胞は Eagle's minimum essential medium (mMEM) にビタミン,アミノ 酸及び 10% 仔牛血清 (Nakarai tesque) を加えた増殖 用培養液で培養用プラスチックフラスコ (10 ml) に て継代培養を行った。指数増殖期の細胞を Dulbecco's phosphate buffer saline (PBS) 液で洗浄した後, 0.5% trypsin (1:250, Difco Laboratories, MI, USA) で処理 して再び浮遊培養液 (S-MEM, GIBCO BRL) にて 24 時間浮遊培養を行った。この時,細胞は 7×10⁴ cells/ml の密度に調整した。この細胞浮遊液を6ml採取し、500 rpmで5分間遠心分離を行なった後に沈殿した細胞 を 1.5 ml の標準塩溶液に入れ赤外吸収スペクトル観 測用細胞溶液とした.標準塩溶液は5mM KCl, 140 mM NaCl, 5 mM HEPES, 2 mM CaCl₂ で pH 7.4 とし た. この標準溶液の K+ 濃度を増加させた時は K+ と Na+ 濃度の和が 145 mM になる様にし Na+ 濃度を減 少させた.

スペクトル観測は観測用細胞溶液から 0.5 ml を分取して多重反射測定用 (ATR) 試料セルに入れ,静置して細胞表面をセルの結晶面に沈降させ接触した状態で行った.

磁界発生装置: 交流磁気発生装置 (B-MAX 創健 社) は 100 V 電源で最大 800 ガウスの磁束密度を発生 する³⁾.本装置は赤外分光測定室の細胞測定用 ATR 試 料セルの結晶面に対して磁界発生面が垂直になるよ うに設置した.この磁界発生面とセル結晶面との距離 は 6 mm とし,700 ガウスの磁束密度の変動磁界が細 胞に照射されるようにした.磁束の周波数は電源に依 存した 50 Hz で行った.

赤外分光法:赤外分光装置はJEOL社製の DAIAMOND 20を使用した。細胞試料は赤外分光装置の試料室内ATR溶液用試料セルの結晶(Zn・Se) 上に一様に分布させ細胞が結晶表面に沈降・接触する 時間約3分間静止した³⁾. この細胞表面のスペクトル はシングルビーム法で波数1000 cm⁻¹ から3140 cm⁻¹ 間を30秒で測定した. 観測されたスペクトルは溶液 のみのスペクトルを差し引き,その吸光度をソフトウ エア (GRAMS Quick Tower) により解析した. 尚,ス ペクトル測定中は全て試料室内の温度を37℃に保持 した.

赤外スペクトル: タンパク質の立体構造及びその 側鎖分子の挙動により生理活性が営まれている. アミ ノ酸のアミド結合により生成されたペプチドにはア ミド I (=C=O) を中心に観測される赤外吸収スペク トルにおいて, α-helix 構造 (1650 cm⁻¹), β-構造 (1630, 1682 cm⁻¹), β-turn 構造と NH₃+_(δ as) (1668, 1692 cm⁻¹), 及び random-coil 構造 (1643 cm⁻¹) 等のピークが観測 できる. 又, アミド II (=N-H) のピークは 1500~1570 cm⁻¹ に観測される^{4,5,6,7)}.

K+ 脱分極による赤外吸収スペクトル

標準溶液に分取した細胞を 0.5 ml 取り赤外分光測 定用の溶液セルに入れて 5 分間観測した。その後,溶 液セル内で高 K⁺溶液 (60 mM KCl, 80 mM NaCl, 5 mM HEPES, 2 mM CaCl₂ を含む pH 7.4 溶液) に置換 し,経時的に 20 分間観測した。尚,観測期間中は溶液 セル内の温度は 37°C に保持した。観測された赤外吸 収スペクトルは観測した個体数 10 の平均吸光度とし て示した。

細胞膜に対する変動磁場の影響

標準溶液中で赤外吸収スペクトルを5分間観測した後に700ガウスの磁束密度の変動磁界を細胞に30秒間照射し,照射中及び,その回復過程の1,2,5分間にわたり赤外吸収スペクトルを観測した。この間測定セル内の溶液は置換せず37℃の恒温のもとで行った。

結 果

細胞膜の K+ 脱分極による影響

標準溶液中で HeLa 細胞膜タンパク質のアミド I (=C=O) 吸収帯は 1631 cm⁻¹ に吸光度 1.000 のピー クとして観測された.同時にアミド II (=N-H) の ピークが 1539 cm⁻¹ に吸光度 0.614 で, N-H_{(σ as}) に帰 属 する 1520 cm⁻¹ のピーク が吸光度 0.567 で, COO⁻_{(st as}) に帰属する 1554 cm⁻¹ のピークが吸光度 0.514 の肩として観測された (Fig. 1).

Fig. 1 Infrared spectra (1330~1705 cm⁻¹) of HeLa cell membrane with effects of K⁺ depolarization. Y-axis: absorbance (arbitrary units) X-axis: wave number (cm⁻¹) Continuation periods of K⁺ depolarization a: control, b: 5 minutes, c: 10 minutes, d: 15 minutes, e: 20 minutes

HeLa 細胞を標準溶液中から 60 mM KCl 溶液に置換して脱分極させてスペクトル観測するとアミド J 吸収帯は最初の 5 分間で 1631 cm⁻¹ から 1624 cm⁻¹ と random-coil 構造に帰属する 1643 cm⁻¹ の二峰性ピークになり吸光度 1.000 と 0.985 として観測された. 同時に β -turn 構造に帰属する 1670 と 1691 cm⁻¹ の肩が吸光度 0.296 と 0.121 として観測された.

アミド II 吸収帯である 1539 cm⁻¹ の吸収ピークは 脱分極により吸光度 0.968 に増強され, N-H (δ as free) に帰属する 1520 cm⁻¹ のピークは 1514 cm⁻¹ に移動し 吸光度 0.796 と増強されていた。また, COO-_{(δ st as}) に 帰属する 1554 cm⁻¹ の肩も吸光度 0.749 と増強されて いた。

脱分極後 10 分経過するとアミド I のピークは 1631 cm⁻¹の一峰性に戻り吸光度 0.987 となった。また、 1670 と 1691 cm⁻¹の肩も吸光度 0.248 と 0.081 に低下 していた。この肩は 15 分後には殆ど観測されなかった。

アミド II の脱分極で増加した各ピークは時間経過 に伴って減少し,20分後には殆ど脱分極以前の吸光度 に回復した。しかし,1514 cm⁻¹ に存在していたピーク は明確に観測できず,一つの肩になっていた。

メチル基の吸収帯は 1330~1480 cm⁻¹ にかけて存在 する.標準溶液中で CH_{3(& sy)} に帰属する 1331, 1363, 1394 cm⁻¹の ピーク は吸光度 0.004, 0.007, 0.044 で, CH_{3(& as)} に帰属する 1421, 1456 cm⁻¹のピークは吸光 度 0.009, 0.152 で観測された. これらのピークは脱分極 に 伴って 1331, 1363, 1394, 1421, 1456 cm⁻¹ で 吸 光 度 0.007, 0.068, 0.148, 0.107, 0.304 と増強されていた。増強 されたこれらのピークは 10 分後には殆ど標準溶液中 の状態に回復した。

カルボン酸及びエステルの吸収帯 1700~1850 cm⁻¹ において標準溶液中で脂肪族エステル C=O_(st) に帰 属する 1739 cm⁻¹ のピークと他のエステルに帰属する 1795, 1836 cm⁻¹ のピークで吸光度 0.093, 0.030, 0.086 が 観測された。これらのピークは脱分極により 1741, 1770, 1795, 1838 cm⁻¹ で吸光度 0.220, 0.104, 0.109, 0.147 と増強されていた。これら増強された各ピークは 10 分後には殆ど標準溶液中の 1739, 1795, 1836 cm⁻¹ での 吸光度 0.106, 0.012, 0.103 の値に回復した。特にカルボ ン酸の COO⁻(st)</sub> に帰属する 1770 cm⁻¹ のピークは脱 分極初期の 5分間のみで観測された (Fig. 2).

細胞膜に対する変動磁場の影響

標準溶液中でアミド I (=C=O) 吸収帯で β -構造 に帰属する 1631 cm⁻¹ のピークは吸光度 1.00 として 観測された。アミド II は 1537 cm⁻¹ にピークを示し, 1518 cm⁻¹ に N-H_{(σ as free}) に帰属する穏やかな肩を持 ち,それぞれの吸光度は 0.358 と 0.24 であった。

この状態で 700 ガウスの磁束密度の変動磁界が 30 秒間細胞にかかるとアミド I は 1631 cm⁻¹ に吸光度 1.00 のピークを示すが 1645 cm⁻¹ に random-coil 構造

Fig. 2 Infrared spectra (1710~1850 cm⁻¹) of HeLa cell membrane with effects of K⁺ depolarization. Y-axis : absorbance (arbitrary units)
X-axis : wave number (cm⁻¹)
Continuation periods of K⁺ depolarization
a : control, b : 5 minutes, c : 10 minutes, d : 15 minutes, e : 20 minutes

Fig. 3 Infrared spectra (1330~1705 cm⁻¹) of HeLa cell membrane with effects of electromagnetic field.
 Y-axis : absorbance (arbitrary units)
 X-axis : wave number (cm⁻¹)

Time course of the recovery process after exposure to the electromagnetic field.

a: control, b: 30 second irradiation, c: after 1 minute, d: after 2 minutes, e: after 5 minutes.

に帰属するピークと 1668 cm⁻¹ に NH₃⁺(δ as) に帰属す る肩はそれぞれ吸光度 0.921 と 0.436 と大きくなり,ま た COO⁻(st as) に帰属する 1600~1560 cm⁻¹ の吸収帯 により裾広がりの様相を示した。変動磁界を除いた回 復過程の 1 分後に 1645, 1668 cm⁻¹ の肩は強調され吸 光度が 0.944 と 0.535 とになった。回復過程の 2 分では 1668 cm⁻¹ の肩は吸光度 0.462 と減少をし始めるが 1645 cm⁻¹ の穏やかな肩は吸光度 0.951 と増強されて いた。しかし、1600~1560 cm⁻¹ での裾広がりは回復過 程の2分で収束して標準溶液中でアミドIと殆ど変わりがない状態に回復した。回復過程の5分では1645 cm⁻¹の肩も吸光度0.848と標準溶液中の状態に回復した。この時点で、アミドIは標準溶液中でのアミドIと殆ど変わりがない状態に回復した。

一方,アミド II は変動磁界がかかるとピークが 1533 cm⁻¹ に移行し,その吸光度も 0.358 から 0.093 へ 極端に減少した.また,1518 cm⁻¹ に存在していた肩が 消失していた.変動磁界を取り除いた 1 分後に,この

Fig. 4 Infrared spectra (1710~1850 cm⁻¹) of HeLa cell membrane with a effects of electromagnetic field.
Y-axis: absorbance (arbitrary units)
X-axis: wave number (cm⁻¹)
Time course of the recovery process after exposure to the electromagnetic field.
a: control, b: 30 second irradiation, c: after 1 minute, d: after 2 minutes, e: after 5 minutes.

ピークは 1539 cm⁻¹ と標準溶液中でアミド II と殆ど 変わりがない状態になったが吸光度が 0.164 と低かっ た.しかし,2 分後にピーク波長も吸光度も元の状態の 1537 cm⁻¹ にピークと 1518 cm⁻¹ に穏やかな肩を持ち, 吸光度も 0.358 と 0.24 を上回る状態にまで回復した (Fig. 3).

- 44 —

この様なアミドの変化に対応して、波数 1700~1850 cm⁻¹に吸収帯を持つカルボン酸やそのエステルの ピークは標準溶液中で 1741, 1770, 1797, 1842 cm⁻¹ に 存在し、その吸光度が 0.043, 0.005, 0.018, 0.007 に観測 された (Fig. 4). 脂肪酸エステルの C=O(st sy) に帰属 する 1741 cm⁻¹ のピークは変動磁界がかかると完全に 消失し,磁界を除いた後2分で完全に回復した.その 他タンパク質の側鎖に依存する COO-(st sv) に帰属す る 1770 cm⁻¹ の ピーク 及 び C=O_(st as) に 帰 属 す る 1797 cm⁻¹のピークも変動磁界がかかると完全に消失 し、磁界を除いた後2分で完全に回復した。この様に 変動磁界の作用している時, 1730, 1757 cm⁻¹ にカルボ ン酸 COO-(st as) に帰属する新しい小さいピークと 1782, 1809 cm⁻¹ に新しい比較的大きいピークを形成 し、その吸光度は 0.004, 0.006, 0.011, 0.024 であった。こ の現象は磁界を除いた後1分後まで持続し、その後は 磁界をかける以前のピークに回復した。

波数 1300~1500 cm⁻¹ にかけてのメチル基の吸収帯 において、CH_{3 (& as)} に帰属する 1458 cm⁻¹ で吸光度 0.09 のピークは変動磁界がかかると 1440 cm⁻¹ に移動 し吸光度 0.009 になった。このピークは磁界を除いた 後1分で同一波数の吸光度が 0.033 に回復し 2分で 1458 cm⁻¹ で吸光度 0.058 の磁界を与える前のピーク 波数になり 5分で 0.084 にまで回復した。しかし, $CH_{3(\delta sy)}$ に帰属する 1394 cm⁻¹ で吸光度 0.03 のピー クは変動磁界がかかると 1404 cm⁻¹ に移動し吸光度 0.032 となり波数の移動のみであった。その後磁界を 除くと吸光度に多少の変動をみるが 5分後には 1394 cm⁻¹ で吸光度 0.024 の磁界を与える前の状態に回復 した。

考 察

HeLa 細胞表面タンパク質のアミド I は標準塩溶液 中で 1631 cm⁻¹ にピークを示した. このピークは一般 的にタンパク質の立体構造が β -構造を保持している 状態を示している⁵. 細胞外液に 60 mM の KCl を添 加して K⁺ 脱分極を起こすと細胞表面タンパク質は β -構造以外に 1643 cm⁻¹ 及び 1670 と 1691 cm⁻¹ の肩 が観測された事から部分的に random-coil 構造と β turn 構造が混在すると考えられる. この構造変化はア ミド II 領域では N-H_{(δ as free}) に帰属する ピークが 1520 cm⁻¹ から 1514 cm⁻¹ に移動し吸光度が増加した 事と, COO⁻(δ st as) に帰属する 1554 cm⁻¹ に存在する 肩の吸光度が増加した事に依存していると思われる. この現象に伴って脂肪族エステルの C=O_(st) に帰属 する 1739 cm⁻¹ のピークと他のエステルに帰属する 1795, 1836 cm⁻¹ のピークでも吸光度の増大が観測で きた.また,タンパク質の側鎖に依存するカルボン酸 の COO⁻(st) に帰属する 1770 cm⁻¹ のピークは脱分極 が起き始めた時のみ観測される事とも対応していた.

カルボン酸 $COO^-_{(st)}$ の K⁺ 脱分極による増大はメ チル基の CH_{3 (δ sy)} に帰属するピーク及び CH_{3 (δ as)} に帰属するピークの増大とも対応していた.

これらの現象から標準塩溶液中でタンパク質の側 鎖に存在するカルボン酸はリン脂質構成成分である ホスファチジールコリンのコリン基と結合状態にあ りエステルを形成している^{8,9)}事が理解できた。このエ ステルは K+ 脱分極によりカルボン酸 COO-(st) の増 大とコリン基を形成しているメチルの分子振動の増 大を引き起こし, 膜構成タンパク質と脂質との間が疎 水状態から親水状態へと変換していると考えられる。

この膜構成タンパク質の側鎖に依存するカルボン 酸 COO⁻(st) の増大とリン脂質のコリン基を形成して いるメチルの分子振動の増大がタンパク分子の構造 変換に対応している自由度の獲得に一役かっている と思われる. K⁺ 脱分極によるカルボン酸 COO⁻(st) の 増大とコリン基のメチル分子の分子振動増大はザリ ガニ無髄神経での顕微ラマン分光法にて解析されて いる現象^{8,9)} と一致していた.

標準塩溶液中でタンパク質のアミド I は β 構造を 中心に構成されている.この状態で 700 ガウスの磁束 密度の変動磁界を 30 秒間細胞に照射するとアミド I は部分的に random-coil 構造になった.また,1668 cm⁻¹の肩が大きくなる事からも NH₃⁺(δ_{as})が増加して いると考えられる.同時に COO⁻(st as)</sub>に帰属する 1600~1560 cm⁻¹の吸光度の増加をももたらしてい る.

一方,変動磁界によりアミド II のピークは 1541 から 1535 cm⁻¹ に移行し,その吸光度が 1/4 に減少した. また,1518 cm⁻¹ に存在していた肩が消失した.これらの現象は変動磁界がアミド II の N-H 間の分子振動を極端に制約している事を示している.

変動磁界により 1743 cm⁻¹ に存在していた脂肪酸エ ステルのピークは消滅し 1730, 1757 cm⁻¹の COO⁻(st as)</sub> に帰属する吸光度が出現した. その他のタ ンパク質の側鎖に依存する COO⁻(st sy)</sub> に帰属する 1770 cm⁻¹のピーク及び C=O_(st as) に帰属する 1797 cm⁻¹のピークも変動磁界がかかると完全に消失し,磁 界を除いた後2分で完全に回復した.

これらの現象から膜において変動磁界により脂肪

酸のエステルが部分的に解離して COO⁻ の形成を促 進していると考えられる.

メチル基の吸収帯において変動磁界がかかると, $CH_{3(\delta as)}$ に帰属する 1458 cm⁻¹のピークは 1440 cm⁻¹ に移動し吸光度が 1/10 になり,磁界を除いた 5 分後 に殆ど回復した.しかし, $CH_{3(\delta sy)}$ に帰属する 1394 cm⁻¹のピークは変動磁界がかかると 10 cm⁻¹の低波 数移動のみで吸光度には大きな変動が見られず,5分 後には磁界を与える前の状態に回復した.

変動磁界により CH_{3 (♂ sy)} に帰属するピークの変化 が少ないことからリン脂質のコリンのメチル基はあ まり変動していない様に思われた。

変動磁界が細胞膜に存在する Na⁺-K⁺ ポンプや K⁺ チャンネルの活性を阻害する¹⁾ 事はリン脂質のコリン 部位に存在するメチル基とその結合側であるタンパ ク質側鎖のカルボン酸との解離が起きていないと考 える.この事は K⁺ 脱分極時の変化と異なりタンパク 分子が構造変換に対してより自由度を獲得し得な かったからだと思われる.

結 論

1. HeLa 細胞膜のタンパク質の構造は β -構造成分 が主体であるが K⁺ 脱分極状態になると部分的に random-coil 構造に変換した。同時にアミド II 構造 N-H の分子振動は増大していた。また、タンパク質の 側鎖にあるカルボン酸 COO⁻(st) のピーク増大とリン 脂質のコリンを構成しているメチル基の CH_{3 (δ sy)} 及 び CH_{3 (δ as)} のピーク増大が K⁺ 脱分極形成に大きく 関与している.

2. 変動磁界がかかると膜のタンパク質に randomcoil 構造の部分的出現や $NH_{3}^{+}{}_{(\delta as)}$ のピークが増加 し, $COO^{-}{}_{(st as)}$ のピーク増加とアミド II の縮退が起 こる.同時に、リン脂質のコリンを構成しているメチ ル基の分子振動の増加やその結合側にあるタンパク 質側鎖のカルボン酸との解離が起こらないために Na⁺-K⁺ ポンプや K⁺ チャンネル等の機能活性が阻害 された.

文 献

- Miyamoto H, Yamaguchi H, Ikehara T, Kinouchi Y: Effects of electromagnetic fields on K⁺(Rb⁺) uptake by HeLa cells. Biological effect of magnetic and electromagnetic fields. (Ed) Ueno S, Plenum Press, New York, 101~119, 1996
- 2) Ikehara T, Park KH, Yamaguchi H, Hosokawa K,

— 45 —

Yoshizaki K, Miyamoto H, Aizawa K, Kinouchi Y : Effects on $Rb^+(K^+)$ uptake of HeLa cells in a high K⁺ medium of exposure to a switched 1.7 tesla magnetic field. Bioelectromagnetics **21** : 228 \sim 237, 2000

- 3) 池原敏孝,山口久雄, 會沢勝夫:変動磁界による細胞膜構造への影響のFT-IRによる解析.実用分光法シリーズ IV「分光学の医学応用」病態に対する分光学的アプローチ(會沢,水野,西川,尾崎編著)58~68,アイピーシー(東京)1999
- Mendelsohn R, Mantsch HH: Progress in protein-Lipid interactions. (Eds) Watts A and DePont JH, Elsevier Scientific Publishing Co., Amsterdam 2: 103~146, 1986
- 5) Lee DC, Haywaed JA, Restall CJ, Chapman D: Second derivative infrared spectroscopic studies of the secondary structures of bacteriorhodopsin and

Ca²⁺-ATPase. Biochemistry **24**: 4364~4373, 1985

 Arrondo JLR, Goni FM: Spectroscopy of Biological Molecules. (Eds) Alix AJP, Bernard L, Manfait M, Wiley, New York, 184~186, 1985

誌

- 7) Arrondo JLR, Mantsch HH, Mullner N, Pikula S, Martonosi A: Infrared spectroscopic characterization of the structural changes connected with the E1 → E2 transition in the Ca²⁺-ATPase of sarcoplasmic reticulum. J Biol Chem 262: 9037~9043, 1987
- ・會沢勝夫,坂井朗子,今川美登里,斉藤弘子,大畑 進:顕微ラマン分光法による神経膜の解析.東医 大誌 46:783~788,1983
- Aizawa K, Ohata S: Dynamic change of β-carotene and phospholipid in nerve cord membrane by K ion depolarization. Proceeding of IXth International Conference on Raman Spectroscopy: 272~273, 1984

Structural changes of the HeLa cell membrane related to K⁺ depolarization and electromagnetic fields

Takashi KAWAUCHI¹), Harubumi KATO¹), Katsuo AIZAWA²), Toshitaka IKEHARA³)

¹⁾Department of Surgery, Tokyo Medical University ²⁾Department of Physiology, Tokyo Medical University ³⁾Department of Physiology, School of Medicine, The University of Tokushima

Abstract

We observed the infrared spectra of the cellular surface of the HeLa cell membrane under physiological conditions. The amid I (=C=O) absorption band of the protein of the HeLa cellular surface in standard saline solution is primarily composed of β structural components but under conditions of K⁺ depolarization, it showed in part random-coil structure. Simultaneously when NH₃⁺ increased, the 1600–1560 cm⁻¹ light absorption which is the COO⁻_(st as) absorption band increased. The peak of amid II (=N-H) increased in light absorption under condition of K⁺ depolarization. However with fluctuating electromagnetic fields, this completely contracted. These phenomena had completely recovered 2–5 minutes after treatment.

The 1743 cm⁻¹ fatty acid ester peak showed increased light absorption under conditions of K^+ depolarization, and at the same time the 1770 cm⁻¹ which depends upon the side chain of the protein shows new peak in the carbon acid COO⁻_(st sy). When there are fluctuations in the electromagnetic field the 1743 cm⁻¹ peak of the fatty acid ester shows a decrease in absorbance with a new peak in the carbon acid COO⁻_(st as) peak due to separation of the 1730 and 1757 cm⁻¹ fatty acid ester.

In response to the increase in the carbon acid $COO^{-}_{(st)}$ under K⁺ depolarization conditions, the CH_{3 (δ sy)} base peak and the CH_{3 (δ as)} peak both increase. When fluctuating electromagnetic field is applied, the CH_{3 (δ as)} 1458 cm⁻¹ peak transforms to 1440 cm⁻¹ and the absorbance becomes one tenth while the 1394 cm⁻¹ peak belonging to CH_{3 (δ sy)} peak of 10 cm⁻¹ of the low wavenumber does not show a large shift in absorbance.

The structure of the protein of the cell membrane which is under condition of K⁺ depolarization is mainly that of β structure components but in part it shows changes to random-coil structure and at the same time there is an increase in the amid II structure N-H molecular vibration increase. Furthermore the carbon acid COO⁻_(st) peak of the side chain on the protein and the methyl base CH_{3 (δ sy)} and CH_{3 (δ as)} peaks are greatly influenced by the K⁺ depolarization.

When electromagnetic fluctuation are applied, partial random-coil structure appears in the protein of the cell membrane and there is an increase in the peaks of the $NH_{3+(\hat{\sigma} as)}$ and $COO^{-}_{(at as)}$ as well as decrease of amid II. However increase in the molecular vibration of the methyl base making up the structure of the choline of the phospholipids and separation of the carbon acid of the side chains of the protein do not occur therefore there is no impedence of functional activity.

Key words> HeLa cell, K⁺ depolarization, Electromagnetic fields, Infrared absorption spectra, molecule vibration