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SNX-482 20 5 M -conotoxin GVIA
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4
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10-20 EPSP
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Fig. 1 Schema of EPSP recording in cultured SCG neurons2 33 .
Conventional intracellular membrane potential recordings were obtained from two neighboring neurons using 
microelectrodes. EPSPs were recorded from each neuron while action potentials were generated in another neuron by pass-
ing 1-2 nA current for 20 ms through an intracellular recording electrode using microelectrode amplifiers Amp, Nihon 
Kohden, Tokyo . Action potential was triggered by command using Clampex 10.2 Molecular Devices, Downingtown, PA
and a stimulator Nihon Kohden, Tokyo . Action potential and EPSP were monitored with a cathode ray oscilloscope 
CRO, Nihon Kohden, Tokyo  and a computer. Data were collected through an interface AD converter, Digidate 1440A, 

Molecular Devices, Downingtown, PA  using Clampex 10.2 and analyzed with the Origin 8 software OriginLab, Northamp-
ton, MA .
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Fig. 2 Contribution of N-type Ca2+ channels to synaptic transmission in cultured SCG neurons.
A : EPSP was recorded at 0.1 Hz. After stable EPSP recording for more than 10 min, -conotoxin GVIA was drop-applied 
at t=0. Normalized and averaged EPSP amplitudes SEM  from 7 experiments with a smooth value red line  were 
plotted against recording time.
B : Fraction of N-type Ca2+ channels mediating neurotransmitter release red %  estimated from averaged reduction in 
EPSP amplitudes during 10-20 min after drop-application of -conotoxin GVIA and 40-43 min for noise blue .
Unblocked green  was calculated from remaining EPSP amplitude, suggesting Ca2+ channels insensitive to -conotoxin 
GVIA.
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4A B SCG
R- Ca2+

Fig. 3 Contribution of P/Q- and N-type Ca2+ channels to synaptic transmission in cultured SCG neurons.
A : EPSP was recorded at 0.1 Hz. At t=0, 250 nM -agatoxin IVA, and at 20 min 5 M -conotoxin GVIA were drop-

applied. Normalized and averaged EPSP amplitudes SEM  from 10 experiments with a smooth value red line  were 
plotted against recording time.
B : Fraction of N- and P/Q-type Ca2+ channels mediating neurotransmitter release %  estimated from averaged reduction in 
EPSP amplitudes during 10-20 min for P/Q-type black , 25-40 min for N-type red  and 40-43 min for noise blue  after 
drop-application of Ca2+ channel blockers. Unblocked green  was calculated from remaining EPSP amplitude, suggesting 
Ca2+ channels insensitive to w-agatoxin IVA and -conotoxin GVIA.

Fig. 4 Contribution of R- and N-type Ca2+ channels to synaptic transmission in cultured SCG neurons.
A : EPSP was recorded at 0.1 Hz. At t=0, 250 nM SNX-482, and at 20 min 5 M -conotoxin GVIA were drop-applied.
Normalized and averaged EPSP amplitudes SEM  from 10 experiments with a smooth value red line  were plotted 
against recording time.
B : Fraction of N- and R-type Ca2+ channels mediating neurotransmitter release %  estimated from averaged reduction in 
EPSP amplitudes during 10-20 min for R-type green , 25-40 min for N-type red  and 40-43 min for noise blue  after 
drop-application of Ca2+ channels blockers. Unblocked black  was calculated from remaining EPSP amplitude, suggesting 
Ca2+ channels insensitive to SNX-482 and -conotoxin GVIA. black , indicating residual unidentified value. Individual 
percent %  calculated.
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N-type Ca2+ channels mediate cholinergic exocytosis in long-term cultured  
sympathetic neurons

Michinori MORI, Shota TANIFUJI, Masato KONISHI, Sumiko MOCHIDA

Department of Physiology, Tokyo Medical University

Abstract

The firing of action potentials encodes neuronal signals, which activate Ca2+ channels expressed at the active zone. Result-
ing Ca2+ entry, initiates release of neurotransmitters from synaptic vesicles. Chemical signals are transmitted to postsynaptic 
neurons. In central neurons, P/Q-, N-, and R-type Ca2+ channels mediate exocytosis of glutamatergic synaptic vesicles, with a 
mix expressed at presynaptic terminals. The nerve terminals of motor neurons mediating exocytosis of cholinergic synaptic 
vesicles express P/Q-type Ca2+ channels, while those of sympathetic neurons mediating exocytosis of noradrenergic synaptic 
vesicles express N-type Ca2+ channels. We investigated Ca2+ channels mediation of cholinergic synaptic vesicle exocytosis in 
long-term cultured superior cervical ganglion neuronal terminals. Specific blockers for N-, P/Q-, and R-type Ca2+ channels 5 

M -conotoxin GVIA, 250 nM -agatoxin IVA, and 250 nM SNX-482, respectively were applied and the resultant decrease 
in excitatory postsynaptic potential EPSP  elicited by presynaptic action potential at 0.1 Hz monitored. -conotoxin GVIA 
decreased EPSP amplitude by 94%. In contrast, -agatoxin IVA decreased EPSP amplitude by 7% to 10%, while SNX-482 
decreased EPSP amplitude by 0.6%. These results suggest that Ca2+ channels continue to mediate cholinergic exocytosis in 
long-term cultured SCG neurons, resulting in maintenance of native function in sympathetic neurons.

Key words Presynaptic terminal, Ca2+ channels, Neurotransmitter, Exocytosis of synaptic vesicles, Cultured superior cervi-
cal ganglion neurons


