Familial Branchial Fistula which was regarded as Branchio-Oto-Renal Syndrome

Chizuko WATANABE***, M.D., PhD., Masaaki YAMANE, M.D., PhD., Nobuhiro SUZUKI, M.D., PhD., Naohisa IIZUKA, M.D., PhD., Yuuji SHIMIZU*, M.D., Mitsuru EGAWA**, M.D., Mamoru SUZUKI***, M.D., PhD.

Department of Otolaryngology, Tokyo Police Hospital
*Department of Urology, TPH, **Department of Pediatrics, TPH
***Department of Otolaryngology, Tokyo Medical University

ABSTRACT

Branchio-oto-renal (BOR) syndrome is a rare disorder first reported by Melnick et al. in 1975. We describe two siblings with branchial fistulae who seemed to manifest BOR syndrome. When otolaryngologists treat patient with fistulae and auricular abnormalities, they should carry out a complete examination of hearing ability and try to discover renal diseases in cooperation with urologists. If they examine only the ear, nose and throat, they may overlook serious renal diseases in routine clinical practice.

INTRODUCTION

Congenital branchial fistula, a remnant of embryonal branchia, is frequently observed in routine clinical practice. Branchio-oto-renal (BOR) syndrome is a rare disorder with multiple branchial cervical fistulae, auricular abnormality, hearing impairment and renal deformity as reported by Melnick et al. in 19751). Reported cases of this syndrome have gradually increased since their report. We describe two siblings with branchial fistulae who seemed to manifest BOR syndrome.

CASE REPORT

Case 1: A 10-year-old boy

Chief complaint: Branchial fistula and related exudate in the left side of the neck.

Past history: The patient had been treated in the Department of Pediatrics for tics and short stature since March 1994.

Present illness: The patient had suffered from branchial fistula and continuous exudate from of the...
left side of the neck since birth. He was referred from the department of pediatrics to our department in March 1995 and admitted for excision of the branchial fistula in August 1995.

Findings on admission: The patient's general appearance was good except for his poor physical development (body weight: 28.5 kg, height: 127.3 cm). A fistula with clear exudate were observed at the level of the upper margin of the thyroid cartilage on the anterior margin of the left sternocleidomastoid muscle. A smooth-surfaced round skin mass about 0.5 cm in diameter was detected near the cricoid cartilage on the anterior margin of the right sternocleidomastoid muscle. He also had a left preauricular pit and had normal shaped auricle (Fig. 1).

Examination results: In spite of normal hearing ability, the patient showed no stapedial reflex in the acoustic impedance audiometric test. Although the results of urinalysis were normal, left ureteral deformity was revealed by intravenous pyelography. The left kidney showed mild hydronephrosis due to the ureteral stricture caused by entanglement of various vessels entangled with the left ureter (Fig. 2).

Operative findings: On August 9, 1995, excision of the left branchial fistula was performed under general anesthesia. The branchial fistula was approximately 3 mm in diameter at its orifice, tapering off distally. The fistula had two fine branches midway which spread in an anterior direction. The main fistula extended medially in a posterosuperior direction, from the anterior margin of the sternocleidomastoid muscle to the left wall of the mesopharynx via the posteroinferior part of the stylohyoid muscle. The approximately 3 cm main fistula was ligated and resected at the level of the stylohyoid muscle.

Histopathological findings: The fistula was lined with squamous epithelia and a number of lymphoid tissues had accumulated in the subepithelial connective tissue (Fig. 3).

Case 2: A five-year-old girl

Chief complaint: Bilateral branchial cervical fistulae and related exudate in the neck.

Past history: Not remarkable.

Present illness: The patient had been suffering from continuous exudate from bilateral cervical fistulae and binaural fistulae since birth. This patient was the younger sister of the first patient and
Fig. 2 Case 1 Intravenous pyelography after 15 minutes

Fig. 3 Case 1 Hematoxylin-eosin stain × 4
Fig. 4 Case 2 A 5-year-old girl

Fig. 5 Case 2 Intravenous pyelography after 15 minutes
both of them first visited our department in March 1995.

Findings on admission: She weighed 15 kg with a 100-cm frame and had a good general appearance. The fistulae and their clear exudate were observed at approximately the mid-levels of the anterior margins of the bilateral sternocleidomastoid muscles. The left lesion was approximately 1 cm higher than the right lesion. In addition to these abnormalities, the patient suffered from bilateral preauricular pits but had normal shaped auricle (Fig. 4).

Examination results: In spite of normal hearing ability, there was no stapedial reflex on the acoustic impedance audiometric test. Although the results of urinalysis were normal, intravenous pyelography disclosed ill-defined kidney calices, especially on the right side, probably due to horseshoe kidneys (Fig. 5).

Operative findings: On August 9th 1995, the bilateral cervical fistulae were excised under general anesthesia. The left fistula had a maximum diameter of 2 mm. Several funicular branches had developed midway along the fistula. The left fistula was 10 mm in length and extended toward the anterior cervical fascia. The right fistula, which was 13 mm in length and had a diameter of over 3 mm, spread toward the anterior part of the sternocleidomastoid muscle and reached the external margin of the anterior cervical muscles. The distal end of the fistula was tangled and coiled.

Histopathological findings: Salivary glands and their channels were observed along both fistulae (Fig. 6).

Family history: Their father, who has a left cervical fistula, has showed no symptoms of kidney or other diseases.

DISCUSSION

There have been 83 reported cases of lateral cervical fistula in Japan, 44 males and 38 females. Of the 83, 36 patients had a familial background. Bilateral lesions were detected in 49 cases and unilateral lesions were detected in 22 cases. The incidence of right cervical fistula was slightly higher than that of left lesions.
Salivary gland tissue was detected in 3 of these cases. The operative and histopathological findings of the second case reported in this study showed a definite aberration of the salivary gland entering into the lateral cervical fistula. Generally the major salivary glands originate in the epithelium of the primordial oral cavity and the sublingual and minor salivary glands remain in the oral cavity. The parotid gland and submandibular gland move toward their specified positions. According to Youngs et al., unlike normal salivary glands, heterotopic salivary glands developing in the anterior region of neck originate in the branchia. The findings obtained in the second case supported their hypothesis. The histologically typical findings obtained in the first case including either squamous epithelium or columnar ciliated epithelium and wall composed of a number of lymphoid tissues with germ centers, referred to as lymphoepithelial cyst, and characteristic of this disease. The circumference of the fistula observed in the first case was irregular, probably because of frequent inflammation, while the circumference of noninflammatory fistulae is nearly elliptical in shape. Inflammation may induce the proliferation of germ centers of lymphoid tissues. Some reported cases of branchial fistulae seem to include cases of BOR syndrome because of their complications with auricular abnormalities such as hearing disorders, aural fistulae and microtia. BOR syndrome is an autosomal dominant hereditary disease. Of seven BOR cases reported in Japan, five showed familial abnormalities including hearing disorders and auricular deformities. As for the two patients reported here, no specific findings suggesting kidney diseases were obtained until they underwent thorough preoperative urological examinations (Table 1).

Researchers have pointed out various etiological factors related to BOR syndrome. According the conventional theory, there is a certain histological relation between the internal ear and the kidney which can be confirmed by common susceptibility to toxic substances including cisplatin and the high incidence of common syndromes including Alport's syndrome. The results of animal experiments have also suggested the existence of a common antigen existing in cochlear vessels and kidney glomerules. The internal ear and kidney develop during the same embryonal period. The optic pit, the primordium of the internal ear, is formed in the fourth embryonal week. The pronephros also appears in this period. The mesonephros, which functions as a transient kidney before the formation of permanent kidneys appears at the end of the fourth embryonal week, corresponding with the period during which the first of three pairs of branchial arches become distinctly protuberant. In the fifth embryonal week, the second and third branchial arches develop over the fourth branchial arch and the ectodermal depression called the cervical sinus is formed. This phenomenon coincides with the development of the metanephros which is the precursor form of the permanent kidneys. Abnormalities are caused as a result of failures of the intercellular development process and space arrangement which are regulated by genetically programmed proteins existing on the cell surface. If proteins common to the development of both are impaired, they would probably cause differentiation typical of BOR syndrome.

Although in 1989 Haan et al. reported the inherent rearrangement on the 8q chromosome in those with a family history of BOR syndrome, it has not yet been confirmed whether this abnormality is peculiar to BOR syndrome or not.

Kidney disease due to BOR syndrome is usually asymptomatic and thus overlooked clinically. Fraser et al. reported that approximately 6% of the patients with BOR syndrome suffered from serious renal abnormalities. Two of the reported cases of BOR syndrome in Japan, were detected due to renal insufficiency. Serious renal disorder was reported in a one-month-old boy suffering from growth disorder, anemia and bleeding tendency. These symptoms were caused by bilateral renal hypoplasia. A final diagnosis BOR syndrome was established on the base of characteristic apparent deformities, abdominal ultrasound and computed tomography, and auditory brainstem response (ABR). In some cases the possibility exists that family members may have died of renal diseases. When otolaryngologists treat patient with fistulae and auricular abnormalities, they must investigate family history, carry out a com-
<table>
<thead>
<tr>
<th>reporter-year</th>
<th>age-sex</th>
<th>branchial</th>
<th>auricular abnormalities</th>
<th>hearing disorder</th>
<th>renal abnormalities</th>
<th>family history</th>
<th>surgical treatment</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichimura</td>
<td>10 years-F</td>
<td>bilateral</td>
<td>binaural fistulae</td>
<td>binaural mixed type</td>
<td>left renal hypoplasia</td>
<td>not remarkable</td>
<td>reconstruction of ossicular chain</td>
<td></td>
</tr>
<tr>
<td>Ichimura</td>
<td>54 years-F</td>
<td>bilateral</td>
<td>binaural fistulae</td>
<td>binaural mixed type</td>
<td>normal</td>
<td>father and older sister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jinno</td>
<td>1 month-M</td>
<td>bilateral</td>
<td>right auricular hypoplasia, narrowed right ear canal, left accessory auricul</td>
<td>binaural</td>
<td>bilateral renal hypoplasia</td>
<td>not remarkable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ichidoya</td>
<td>5 years-M</td>
<td>unknown</td>
<td>bilateral auricular hypoplasia</td>
<td>binaural</td>
<td>right renal hypoplasia</td>
<td>mother</td>
<td>prevention of vesicoureteral reflux (VUR)</td>
<td>cleft palate</td>
</tr>
<tr>
<td>Yoshida</td>
<td>2 years-M</td>
<td>bilateral</td>
<td>binaural fistulae</td>
<td>left</td>
<td>normal</td>
<td>father</td>
<td>excision of bilateral branchial</td>
<td></td>
</tr>
<tr>
<td>Yokokoji</td>
<td>8 years-F</td>
<td>bilateral</td>
<td>binaural fistulae, right cupped protruding ear, right accessory auricule</td>
<td>binaural mixed type</td>
<td>normal</td>
<td>father</td>
<td>excision of bilateral branchial fistula and biaurical pits</td>
<td></td>
</tr>
<tr>
<td>Iwasaki</td>
<td>23 years-F</td>
<td>bilateral</td>
<td>left auricular hypoplasia, left meatal atresia</td>
<td>right mixed type left deafness</td>
<td>bilateral renal hypoplasia</td>
<td>father</td>
<td>excision of bilateral branchial fistula</td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>10 years-M</td>
<td>unilateral (left)</td>
<td>left preauricular pit</td>
<td>not remarkable (disappearance of stapedial reflex)</td>
<td>abnormal ureter</td>
<td>father and younger sister</td>
<td>excision of unilateral branchial fistula</td>
<td>tic, short stature</td>
</tr>
<tr>
<td>Case 2</td>
<td>5 years-F</td>
<td>bilateral</td>
<td>binaural fistulae</td>
<td>not remarkable (disappearance of stapedial reflex)</td>
<td>bilateral renal hypoplasia (suspected of horseshoe kidney)</td>
<td>father and older brother</td>
<td>excision of bilateral branchial fistula</td>
<td></td>
</tr>
</tbody>
</table>
plete examination of hearing ability and try to discover renal diseases in cooperation with urologists. If they observe only the ear and nose and throat, branchial fistulae and auricular abnormalities, they may overlook serious renal diseases in routine clinical practice.

Although the first patient reported in this study had a history of tonic tics and short stature, his growth hormone secretion was normal. He grew to 39.2 kg and 140.0 cm by June 1997. His body weight was within $-1SD$ and his height within $-2SD$ of the Japanese averages. He has been treated in the department of pediatrics for approximately three years with Chinese herbal medicine, and there has been a lull in his tics. These symptoms are supposed to bear no definite relation to lateral fistula.

Generally bilateral branchial fistulae are symmetrically observed at the same level. The second case in this study, however, had bilateral cervical fistulae at definitely different levels. This phenomenon seemed to be caused by the asymmetrical development of the branchial arches. In the second case the branchial fistula on the left side of the neck was approximately 1 cm higher than that on the right side. Although the brother had a cervical fistula only on his left side, a mass on the right side occasionally produced exudate at age 2 or 3. Therefore the right lesion was probably a cyst which was an incomplete lateral cervical fistula. In the first case the location of the left fistula was approximately 7 cm higher than that on the right.

BOR syndrome comprises various branchiogenic abnormalities including branchial fistulae and external auditory deformities, hearing disorders due to abnormalities of the internal and middle ear and renal abnormalities. Patients with BOR syndrome manifest some of these abnormalities in combined form because of their mild phenotypic expression. According to Fraser’s statistical analysis conducted on 133 patients with BOR syndrome, 89% have hearing disorders. Although the two patients treated in this department showed no hearing disorder, their symptoms and signs, such as the morphological kidney abnormalities were classified into the category of BOR syndrome. Previously reported cases included those with delayed hearing disorders. Consequently it is necessary for us to follow up the clinical courses of these patients, paying special attention not only to renal function but also to hearing activity.

ACKNOWLEDGMENT

We are indebted to Prof. J Patrick Barron of the International Medical Communications Center of Tokyo Medical University for his review of the manuscript.

We thank Professor Fumihisa Hiraide (the Department of Otolaryngology, Tokyo Medical University, Japan) for his advice. We announce the sad news that Professor Hiraide passed away. We hope he will find peace in the next world.

REFERENCES

BOR 症候群と思われる家族性の側頸廥症例

渡辺 千寿子1) 鈴木 伸 弘1) 飯塚 尚 久1) 山根 雅 昭1)
清水 有 二2) 江川 充3) 鈴木 衛4)

東京総合病院 耳鼻咽喉科1)，同泌尿器科2)，同小児科3)
東京医大耳鼻咽喉科学教室4)

先天性側頸廥は胎生期の顔面器官の遺残として有名であり、日常の臨床の対処法は確定したことは稀ではない。Melnickらが1975年に多発性奇形の1つとして側頸廥・耳介部異常・聴・腎奇形を持ったものを報告してから Branchio-oto-renal syndrome（以下 BOR 症候群と略す）と呼ばれ、近年徐々に報告例が増えており、今回私どもは家族発生の側頸廥症例を発見し、それを BOR 症候群を呈したものと思われるのでここに報告する。

最初の症例は10歳の男児、チックと低身長のため平成6年3月より東京総合病院小児科受診中であった。生下時より左側頸頸部に瘻孔と皮下を発見しており平成7年3月小児科より耳鼻咽喉科紹介受診となった。左側頸廥と診断され、同年8月頸側廥摘出した。

尿検査では異常はなかったが、後鼻鏡所見や外耳道奇形は発見された。左耳管に異所性血管が巻きついて狭帯を起こしており、そのため左の耳管内に水腫の増悪が見られた。他の体表奇形としては、左耳前部に瘻孔が存在した。

次の症例は5歳女児。生下時より両側頸部廥孔からの湿出液、両側耳廥孔が見られた。この児は最初の症例の妹で児と共に平成7年3月耳鼻咽喉科初診となった。平成7年8月9日、全身麻醉下に側頸廥摘出術を行った。

尿検査では異常はなかったが、後鼻鏡所見や耳鼻咽喉科で両側耳廥、特に右側の抜去が不良でおそらく馬蹄耳と思わわれる所見がみられた。

BOR 症候群は遺伝疾患であり、遺伝形式は常染色体優性である。BOR 症候群は本邦では7例の報告があるが、そのうち家族に聴音や耳介部奇形などの異常が見られたものは5例である。日本内耳科学会で耳鼻咽喉科の頭書を受けるまでには、特に腎腫の発見を疑うような所見はなかった。

BOR 症候群の腎障害は無症候性が多いので、看過される傾向にあるのは否定できない。本邦での報告例のうち腎機能不全から2例が発見されている。側頸廥および耳介部異常があった場合には、家族歴の聴取、難聴の検査はもちろん、泌尿器科の協力を得て腎疾患の発見に努めるべきと考える。それと小児科や耳介部異常といった耳鼻咽喉科の範囲の診察、重篤な腎障害が疑われているのを注意することになりかねない。

BOR 症候群は、側頸廥と耳廥孔や外耳奇形などの顔原性奇形に内耳中耳にかかわる奇形による聴覚及び腎奇形を伴うものをさすが、形質変異が弱く、このうちのいくつかの組み合わせをとるものが多い。耳鼻咽喉科の形態異常があり、難聴を呈してはいないが、BOR 症候群の範囲を考えここに報告した。経過を追うために難聴の進行をみた例も報告されているので、腎機能のみならず今後も経過をみていくべき。

なお本論文の要旨は1996年1月に神戸で開催された頭頸部外科学会にて発表した。

（10）